Computational complexity of iterated maps on points and sets

Christoph Spandl

Fakultät für Informatik
Universität der Bundeswehr München

CCA 2013

Discrete dynamical systems - point dynamics

- Let $M \subseteq \mathbb{R}^{n}$ be a cuboid, that is of the form $M=\left[a, b_{1}\right] \times \ldots \times\left[a_{n}, b_{n}\right]$ with $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathbb{R}$.
- Let $f: M \rightarrow M$ be a self mapping, in particular a C^{2}-diffeomorphism.
- Then the pair (M, f) is called a discrete dynamical system.
- The dynamics is governed by the iteration equation

$$
\begin{aligned}
x^{(k+1)} & =f\left(x^{(k)}\right) \\
x^{(0)} & \in M .
\end{aligned}
$$

- The second condition specifies the dynamics as an initial value problem.
- The initial value produces an orbit $\left(x^{(k)}\right)_{k \in \mathbb{N}}$ under the dynamics.

Discrete dynamical systems - set dynamics

point dynamics - set dynamics
The standard definition as above describes a dynamics of points in \mathbb{R}^{n}. However, dynamics can also be formulated for sets of \mathbb{R}^{n}.

- Denote by C_{M} the set of all compact subsets $A \subseteq M$ of M.
- Generalize $f: M \rightarrow M$ to $f_{C}: C_{M} \rightarrow C_{M}$ generically by setting $f_{C}(A):=f[A]$ for all $A \in C_{M}$.
- Then the pair $\left(C_{M}, f_{C}\right)$ defines a discrete dynamical system on sets.
- Note that if $f: M \rightarrow M$ is computable, then also $f_{C}: C_{M} \rightarrow C_{M}$ is computable.

Set dynamics - problems

Set dynamics in the case of mixing: Arnold's cat map

- The map is area preserving.
- The initial set is uniformly spread over the whole domain in a few iterations.
- The number of spheres covering $A^{(k)}$ for given accuracy is typically growing exponentially in the number of iterations.

Local set dynamics by linearization: cocycles (1)

Consider a sphere $S=B\left(x^{(0)}, r\right)$ and examine $\left(D f^{k}\right)\left(x^{(0)}\right)$. For given k and r sufficiently small, $f^{k}\left(x^{(0)}\right)+\left(D f^{k}\right)\left(x^{(0)}\right) B(0, r) \approx f^{k}[S]$.

Local set dynamics by linearization: cocycles (2)

Lyapunov exponents

- The length of the axes of the ellipsoid $f^{k}\left(x^{(0)}\right)+\left(D f^{k}\right)\left(x^{(0)}\right) B(0, r)$ are denoted by $r_{1}^{(k)}, \ldots, r_{n}^{(k)}$.
- The value $r_{i}^{(N)}$ measures the contraction or expansion near the orbit segment $\left(x^{(k)}\right)_{k \leq N}$ along the i th principal axis.
- Then the i th Lyapunov exponent λ_{i} is given by

$$
\lambda_{i}=\lim _{k \rightarrow \infty} \frac{\ln \left(r_{i}^{(k)}\right)}{k}
$$

if the limit exists.

Local set dynamics by linearization: cocycles (3)

This linearized map can be expressed in the framework of a dynamical system by a cocycle:

$$
\begin{aligned}
x^{(k+1)} & =f\left(x^{(k)}\right) \\
z^{(k+1)} & =(D f)\left(x^{(k)}\right) \cdot z^{(k)} \\
x^{(0)} & \in M, \quad z^{(0)}=\mathbb{1}
\end{aligned}
$$

where $\mathbb{1}$ is the $n \times n$ identity matrix. Note that $z^{(k)}=\left(D f^{k}\right)\left(x^{(0)}\right)$.

From approximations to enclosures

- The above linearization approximates $f^{k}[S]$.
- It is only asymptotically exact for $R \rightarrow 0$, but not for $R>0$.
- However, this approach can be made rigorous even for $R>0$.
- In verified computing, enclosures are used.
- Here, this is a function $\bar{f}_{C}: C_{M} \rightarrow C_{M}$ satisfying

$$
f_{C}(A) \subseteq \bar{f}_{C}(A)
$$

for all $A \in C_{M}$.

- In the following it is convenient to restrict the domain of the enclosure to cuboids.
- Let Q_{M} be the set of all cuboids $I \subseteq M$, then find an appropriate function $\bar{f}_{Q}: Q_{M} \rightarrow Q_{M}$ satisfying $f_{C}(A) \subseteq \bar{f}_{Q}(A)$ for all $A \in Q_{M}$.

Finding an appropriate enclosure (1)

- Use a Taylor polynomial with remainder term:

$$
f_{i}(y)=f_{i}(x)+\sum_{j} \frac{\partial f_{i}}{\partial x_{j}}\left(x+\Theta_{i}(y-x)\right)\left(y_{j}-x_{j}\right)
$$

for $x, y \in M$ with $\Theta_{i} \in[0,1], i=1, \ldots, n$.

- Furthermore assume a Lipschitz condition:

$$
\left|\frac{\partial f_{i}}{\partial x_{j}}(y)-\frac{\partial f_{i}}{\partial x_{j}}(x)\right| \leq(L(I))_{i j} \cdot\|y-x\|_{\infty}
$$

- Then

$$
f_{C}(I) \subseteq f(x)+((D f)(x)+[-1,1] \cdot|I| \cdot L(I))(I-x)
$$

for all $I \in Q_{M}$ where $|I|=\sup _{i}\left(\left|I_{i}\right|\right)=\sup _{i}\left(b_{i}-a_{i}\right)$.

Finding an appropriate enclosure (2)

- Assume the following normal form

$$
I=x+[-1,1] \cdot e
$$

for cuboids $I \in Q_{M}$, where $x \in M, e \in \mathbb{R}_{+}^{n}$.

- Then

$$
f_{C}(I) \subseteq f(x)+[-1,1] \cdot V(x, e) \cdot e
$$

where

$$
V(x, e)=|(D f)(x)|+2\|e\|_{\infty} L(x+[-1,1] \cdot e) .
$$

- Reformulation: let

$$
C Q_{M}=\left\{(x, e) \in M \times \mathbb{R}_{+}^{n} \mid x+[-1,1] \cdot e \in Q_{M}\right\},
$$

then define $\bar{f}_{Q}: C Q_{M} \rightarrow M \times \mathbb{R}_{+}^{n}$ by

$$
\bar{f}_{Q}(x, e)=(f(x), V(x, e) \cdot e) .
$$

The modified cocycle

This set dynamics can be formulated by a modified cocycle:

$$
\begin{aligned}
x^{(k+1)} & =f\left(x^{(k)}\right) \\
z^{(k+1)} & =V\left(x^{(k)}, e^{(k)}\right) \cdot z^{(k)} \\
x^{(0)} & \in M, \quad z^{(0)}=\mathbb{1}
\end{aligned}
$$

where

$$
\begin{aligned}
V(x, e) & =|(D f)(x)|+2\|e\|_{\infty} L(x, e) \\
e^{(k)} & =z^{(k)} \cdot e^{(0)} \\
e^{(0)} & \in \mathbb{R}^{n} \text { s.t. }\left(x^{(0)}, e^{(0)}\right) \in C Q_{M} .
\end{aligned}
$$

The model of computation - representing reals

- We start with a fixed point number system:

$$
\widehat{\mathbb{R}}(p, \beta)=\left\{x \in \mathbb{R}\left|\exists r, s \in \mathbb{Z} \cdot x=s+r \cdot \beta^{-p} \wedge\right| r \mid \leq \beta^{p}-1\right\}
$$

- where $\beta \geq$ is the base and $p \geq 1$ the precision.
- Then we allow arbitrary precision:

$$
\widehat{\mathbb{R}}(\beta)=\bigcup_{p \geq 1} \widehat{\mathbb{R}}(p, \beta)
$$

- A fixed point number $\hat{x} \in \widehat{\mathbb{R}}(p, \beta)$ approximates a real $x \in \mathbb{R}$, if

$$
x \in \hat{x}+\beta^{-p}[-1,1] .
$$

- Any $x \in \mathbb{R}$ can be represented by a sequence $\left(\hat{x}_{n}\right)_{n \in \mathbb{N}}$ with $\hat{x}_{n} \in \widehat{\mathbb{R}}\left(p_{n}, \beta\right)$, each \hat{x}_{n} approximating x and $\lim _{n \rightarrow \infty} p_{n}=\infty$.

The model of computation - representing functions

- Let $f: \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given. A function $\hat{f}: \subseteq \widehat{\mathbb{R}}^{n} \rightarrow \widehat{\mathbb{R}}$ is called an approximation function for f if:

$$
\hat{x} \in \widehat{\mathbb{R}}^{n} \text { approximates } x \in \operatorname{dom}(f) \Longrightarrow \hat{f}(\hat{x}) \text { approximates } f(x)
$$

- We call \hat{f} approximation continuous if for any $\left(\hat{x}_{n}\right)_{n \in \mathbb{N}}$: $\left(\hat{x}_{n}\right)_{n \in \mathbb{N}}$ representing $x \in \operatorname{dom}(f) \Longrightarrow\left(\hat{f}\left(\hat{X}_{n}\right)\right)_{n \in \mathbb{N}}$ representing $f(x)$
- Since $\widehat{\mathbb{R}}$ is countable, define computability for $\hat{f}: \subseteq \widehat{\mathbb{R}}^{n} \rightarrow \widehat{\mathbb{R}}$ by classical computability theory.
- Then f is called computable, if it has a computable approximation continuous approximation function.

Further specifications and generalizations

- Generalization of an approximation of $x \in \mathbb{R}$:
$(\hat{x}, \bar{e}) \in \widehat{\mathbb{R}}\left(p_{1}, \beta\right) \times \widehat{\mathbb{R}}\left(p_{0}, \beta\right)$ approx. $x \in \mathbb{R} \Longleftrightarrow x \in \hat{x}+[-1,1] \cdot \bar{e}$
- Normal form for approximation functions $\hat{f}: \subseteq \widehat{\mathbb{R}}^{n} \rightarrow \widehat{\mathbb{R}}$:

$$
\begin{gathered}
\hat{x} \in \widehat{\mathbb{R}}\left(p_{1}, \beta\right) \times \ldots \times \widehat{\mathbb{R}}\left(p_{n}, \beta\right) \Longrightarrow \hat{f}(\hat{x}) \in \widehat{\mathbb{R}}\left(p_{0}, \beta\right) \\
p_{0}=\min \left(p_{1}, \ldots, p_{n}\right)
\end{gathered}
$$

- Normal form for approximations of self mappings $f: M \rightarrow M$:

$$
\begin{aligned}
\hat{x} \in \widehat{\mathbb{R}}\left(p_{1}, \beta\right) \times \ldots \times \widehat{\mathbb{R}}\left(p_{n}, \beta\right) & \Longrightarrow \hat{f}(\hat{x}) \in \widehat{\mathbb{R}}\left(p_{1}^{\prime}, \beta\right) \times \ldots \times \widehat{\mathbb{R}}\left(p_{n}^{\prime}, \beta\right) \\
\beta^{-p^{\prime}} & \leq\left|Q \cdot \beta^{-p}\right|
\end{aligned}
$$

where $Q \in \mathbb{R}^{n \times n}$ is an orthogonal matrix.

Point dynamics - formulating the algorithm (1)

- A finite segment $\left(x^{(k)}\right)_{0 \leq k \leq N}$ of lenght N of the true orbit is computed: a pseudo orbit $\left(\hat{x}^{(k)}\right)_{0 \leq k \leq N}$
- with demanded precision $p_{1}^{o}, \ldots, p_{n}^{o}: x_{i}^{(k)} \in \hat{x}_{i}^{(k)}+\beta^{-p_{i}^{o}}[-1,1]$ for all $k \leq N$.
- In the above formulation:

$$
x^{(k)} \in \hat{x}^{(k)}+[-1,1] \cdot \bar{e}^{(k)}, \quad \bar{e}^{(k)} \leq \beta^{-p^{0}} .
$$

- Since N is fixed, there ex. $p_{1}^{s}, \ldots, p_{n}^{s} \geq 1$ s.t. the above condition is fulfilled starting with

$$
\hat{x}^{(0)} \in \widehat{\mathbb{R}}\left(p_{1}^{s}, \beta\right) \times \ldots \times \widehat{\mathbb{R}}\left(p_{n}^{s}, \beta\right)
$$

and approximating f by

$$
\begin{aligned}
& \hat{x}^{(k)} \in \widehat{\mathbb{R}}\left(p^{(k)}, \beta\right) \Longrightarrow \hat{f}(\hat{x}) \in \widehat{\mathbb{R}}\left(p^{(k+1)}, \beta\right) \\
& \beta^{-p^{(k+1)}} \leq \bar{e}^{(k+1)} \leq\left|Q^{(k+1)} \beta^{-p^{s}}\right| .
\end{aligned}
$$

Point dynamics - formulating the algorithm (2)

- Using the above precision control for \hat{f} and the modified cocycle for calculating the error propagation leads to

$$
\bar{e}^{(k+1)} \geq V\left(\hat{x}^{(k)}, \bar{e}^{(k)}\right) \bar{e}^{(k)}+\left|Q^{(k+1)} \beta^{-p^{s}}\right|
$$

for the recursion of the error.

- Finally, by approximating $D f$ by $\widehat{D f}$,

$$
\bar{e}^{(k+1)}=\bar{V}\left(\hat{x}^{(k)}, \bar{e}^{(k)}\right) \bar{e}^{(k)}+\left|Q^{(k+1)}\right| \beta^{-p^{s}}
$$

is obtained where

$$
\bar{V}(\hat{x}, \bar{e})=|(\widehat{D f})(\hat{x})|+\|\bar{e}\|_{\infty}(2 \cdot \bar{L}(\hat{x}, \bar{e})+E)
$$

Set dynamics - differences in the algorithm

- By pairing $\left(x^{(k)}, z^{(k)}\right)$, the modified cocycle can be viewed as a new dynamical system: then
set dynamics is reduced to point dynamics with different phase space.
- Alternatively, the pair $\left(\hat{\chi}^{(k)}, \bar{e}^{(k)}\right)$ is interpreted as an enclosure for cuboids:

$$
\prime^{(k)}=x^{(k)}+[-1,1] \cdot e^{(k)} \subseteq \hat{x}^{(k)}+[-1,1] \cdot \bar{e}^{(k)} .
$$

- Then the error control has to be reinterpreted.
- But the resulting formulas are nearly the same as in the case of points.
- Only the interpretation is different.

Point dynamics - set dynamics (enclosures)

$$
\begin{aligned}
\hat{x}^{(k+1)} & =\hat{f}\left(\hat{x}^{(k)}\right) \\
\bar{z}^{(k+1)} & =\bar{V}\left(\hat{x}^{(k)}, \bar{e}^{(k)}\right) \bar{z}^{(k)}+\left|Q^{(k+1)}\right| \\
\hat{x}^{(0)} & \in \widehat{\mathbb{R}}\left(p_{1}^{s}, \beta\right) \times \ldots \times \widehat{\mathbb{R}}\left(p_{n}^{s}, \beta\right) \\
\bar{V}(\hat{x}, \bar{e}) & =|(\widehat{D f})(\hat{x})|+\|\bar{e}\|_{\infty}(2 \cdot \bar{L}(\hat{x}, \bar{e})+E) \\
\bar{e}^{(k)} & =\bar{z}^{(k)} \bar{e}^{(0)} \\
\bar{e}^{(0)} & =\alpha \cdot \beta^{-p^{s}}, \quad \bar{z}^{(0)}=\mathbb{1}
\end{aligned}
$$

- Even the algorithm can be expressed via a modified cocycle.
- $\alpha=1$ in the case of points, $\alpha=2$ in the case of cuboids.
- p^{s} is the initial precision for $\hat{x}^{(0)}$ in the case of points.
- In the case of cuboids, p^{s} determines an upper bound on the extent of $\ell^{(0)}$.

Computational complexity: loss of significance rates

Definition

Let $p_{i}^{\min }\left(x, N, p^{o}\right)$ be the minimal precisions for p_{i}^{s} such that the demanded precision p° for the pseudo orbit of length N is achieved when $x \in M$ is the initial condition.

- The growth rate of $p_{i}^{\min }\left(x, N, p^{0}\right)$ is

$$
\sigma\left(x, p^{o}\right)=\limsup _{N \rightarrow \infty} \frac{p^{\min }\left(x, N, p^{o}\right)}{N} .
$$

The loss of significance rates $\sigma: M \rightarrow \mathbb{R}^{n}$ are defined by

$$
\begin{equation*}
\sigma(x)=\lim _{p \rightarrow \infty} \sigma(x, p) . \tag{1}
\end{equation*}
$$

Loss of significance rate - main results (1)

An easy provable observation: the loss of significance rates are bounded. A bit more effort: the loss of significance rates are bounded from below by the Lyapunov exponents.
Proposition
Let (M, f) be a dynamical system, $x \in M$ and $\sigma(x)$ the loss of significance rates. Then there exist some $c \in \mathbb{R}_{+}^{n}$ such that $(0, \ldots, 0)^{t} \leq \sigma(x, p) \leq \sigma(x) \leq c$ holds for all precisions $p_{1}, \ldots, p_{n} \geq 1$.

Theorem
Let the notation as above. Then

$$
\sigma_{i}(x) \geq \frac{1}{\ln (2)} \lambda_{i}(x)
$$

holds for $i=1, \ldots, n$ where $\lambda_{i}(x)$ is the i th Lyapunov exponent, if it exists.

Loss of significance rate - main results (2)

- The proof of the theorem is based on a $Q R$-decomposition of the form

$$
\begin{aligned}
Q^{(k+1)} R^{(k+1)} & =(D f)\left(x^{(k)}\right) Q^{(k)} \\
Q^{(0)} & =\mathbb{1} .
\end{aligned}
$$

- The link between this $Q R$-decomposition and the Lyapunov exponent is well established in the literature.
- Also $R^{(k)}$ and $Q^{(k)}$ are approximated by $\hat{R}^{(k)}, \hat{Q}^{(k)}$.
- Since in $\bar{e}^{(k)}$ not $(\widehat{D f})($.$) but |(\widehat{D f})()$.$| is relevant the matrix$ multiplication of matrices of the form $|A|$ need to be done more elaborate to reduce overestimation of the error.

Loss of significance rate - main results (3)

If some additional aspects concerning the QR-decomposition and the Lyapunov exponents turn out to be true (which actually have not been checked yet), the we also have:
Theorem
Let the notation as above. Then

$$
\sigma_{i}(x) \leq \frac{1}{\ln (2)} \lambda_{i}(x)
$$

holds for $i=1, \ldots, n$.
Thus the Lyapunov exponents turn out also to be an upper bound on the loss of significance rates.

