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Introduction

Discrete dynamical systems - point dynamics

» Let M C R" be a cuboid, that is of the form
M = [abq] x ... x [an, bp] With &1,...,an,by,..., by € R.

» Let f: M — M be a self mapping, in particular a
C?-diffeomorphism.

» Then the pair (M, f) is called a discrete dynamical system.
» The dynamics is governed by the iteration equation

X(k+1) — f(X(k))
x© e M.

» The second condition specifies the dynamics as an initial value
problem.

» The initial value produces an orbit (x))kcn under the dynamics.
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Introduction

Discrete dynamical systems - set dynamics

point dynamics - set dynamics

The standard definition as above describes a dynamics of points in
R". However, dynamics can also be formulated for sets of R".

» Denote by Cy, the set of all compact subsets A C M of M.

» Generalize f: M — M to fo: Cy — Cyy generically by setting
fc(A) .= f[A] for all A € Cpy.

» Then the pair (Cy, fc) defines a discrete dynamical system on
sets.

» Note that if f: M — M is computable, then also fo: Cyy — Cpy is
computable.



Introduction

Set dynamics - problems

Set dynamics in the case of mixing: Arnold’s cat map

M

» The map is area preserving.

» The initial set is uniformly spread over the whole domain in a few
iterations.

» The number of spheres covering A for given accuracy is
typically growing exponentially in the number of iterations.




Iteration on points and sets

Local set dynamics by linearization: cocycles (1)

Consider a sphere S = B(x(9, r) and examine (Df*)(x(%)). For given k
and r sufficiently small, f*(x(©)) 4 (Df*)(x(©)B(0, r) ~ fX[S].
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Iteration on points and sets

Local set dynamics by linearization: cocycles (2)

Lyapunov exponents
» The length of the axes of the ellipsoid 4(x(9)) + (D<) (x(©)B(0, r)
are denoted by rfk), e r,(,k).
» The value r,(N) measures the contraction or expansion near the
orbit segment (x(K)) < along the ith principal axis.
» Then the ith Lyapunov exponent \; is given by

In(r.(k))

I

A= lim

k—oo

if the limit exists.



Iteration on points and sets

Local set dynamics by linearization: cocycles (3)

This linearized map can be expressed in the framework of a dynamical
system by a cocycle:

xUH1) = £(x(K))
21 = (DF) (xR . z(K)
xDem z0=1

where 1 is the n x nidentity matrix. Note that z(X) = (Df¥)(x(©)).



Iteration on points and sets

From approximations to enclosures

» The above linearization approximates <[S].

» |t is only asymptotically exact for R — 0, but not for R > 0.

» However, this approach can be made rigorous even for R > 0.
» In verified computing, enclosures are used.

» Here, this is a function f¢: Cy — Cy satisfying

fe(A) € fe(A)

forall Ae Cy.

» In the following it is convenient to restrict the domain of the
enclosure to cuboids.

» Let Qu be the set of all cuboids / € M, then find an appropriate
function fq: Qu — Qu satisfying fo(A) C fo(A) for all A € Qu.



Iteration on points and sets

Finding an appropriate enclosure (1)

» Use a Taylor polynomial with remainder term:
of;
fily) = fi(x) + Z,: o X+ Oy =) = %)

for x,y € Mwith ©; € [0,1],i=1,...,n.
» Furthermore assume a Lipschitz condition:

oh
0x,

(v) - g;;m\ < (L) -y — Xl

» Then
fo(1) < f(x) + ((DF)(x) + [=1,1] - 1] - L(D) (I = x)

for all I € Qu where |I] = sup;(|/j|) = sup;(b; — a;).



Iteration on points and sets

Finding an appropriate enclosure (2)
» Assume the following normal form

I=x+[-1,1]-e

for cuboids / € Qu, where x € M, e € R']..

» Then
fe(h) C f(x)+[-1,1]- V(x,e)-e

where

V(x, e) = [(DH(x)] + 2[|ellccL(x +[-1,1] - €).

» Reformulation: let
CQuy={(x,e) e M xR} | x+[-1,1]- e € Qu},

then define fq: CQy — M x R by
?Q(Xv e) = (f(X)7 V(X7 e) ' e) .
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Iteration on points and sets

The modified cocycle

This set dynamics can be formulated by a modified cocycle:

X(k‘H) — f(X(k))
z(k‘H) — V(X(k), e(k)) . z(k)

xXDem z0=1
where

V(x,e) = [(Df)(x)| + 2| el < L(x, €)
oK) — (k) . gl0)

e c R s.t. (x(9, &) e cqQy.
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Computability issues General framework

The model of computation - representing reals
» We start with a fixed point number system:

I@(pm@):{XGR’E|I’,S€Z.X:s+r.ﬁ_,0 A |r’§5p—1}

v

where > is the base and p > 1 the precision.
Then we allow arbitrary precision:

R(8) = | J R(p, B)

p>1

v

v

A fixed point number X € @(p, B) approximates a real x € R, if

X €X+BP-1,1].

v

Any x € R can be represented by a sequence (Xn)nen With
Xn € R(pn, B), each X, approximating x and lim,_,., pn = oc.
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Computability issues General framework

The model of computation - representing functions

Let f:CR" — R be given. A function f: CR" — R is called an
approximation function for f if:

v

X € R" approximates x € dom(f) = f(X) approximates f(x).

v

We call f approximation continuous if for any (Xn)nen:
(Xn)nen representing x € dom(f) = (F(Xn))nen representing f(x)

Since R is countable, define computability for 7:C R” — R by
classical computability theory.

Then f is called computable, if it has a computable approximation
continuous approximation function.

v

v
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Computability issues General framework

Further specifications and generalizations

» Generalization of an approximation of x € R:
(x,8) € R(py, B) x R(po, B) approx. x e R < x e X +[-1,1]-@
» Normal form for approximation functions f:CR" 5 R:

X € R(py,B) x ... x R(pn, B) = H(%) € R(po, B)
Po = min(py, ..., Pn)

» Normal form for approximations of self mappings f: M — M:

X e R(py1,B) % ... x R(pn, B) = F(X) € R(P}, B) x ... x R(p, B)
B <|Q-B7P|

where Q € R™" is an orthogonal matrix.
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Computability issues Iteration of points

Point dynamics - formulating the algorithm (1)

> A finite segment (x(¥))o <y of lenght N of the true orbit is
computed: a pseudo orbit (XF))o<k<n

> with demanded precision p?, ..., p2: x*) € x% + g=P[—1 1] for
allk <N.
» In the above formulation:

X e 30 111,11 .80, gk < gp°.

» Since N is fixed, there ex. ps5, ..., p; > 1 s.t. the above condition
is fulfilled starting with

%O e R(p§, 8) x ... x R(p5, B)
and approximating f by
%K) e R(p®, B) = #(%) e R(pk1), B)
p=PE < gkt < QD 3P|,
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Computability issues Iteration of points

Point dynamics - formulating the algorithm (2)

» Using the above precision control for f and the modified cocycle
for calculating the error propagation leads to

alk+1) > V()A((k)’é(k))é(k) + |Qk+1) =P

for the recursion of the error.
» Finally, by approximating Df by /D\f

a1 = y(x) gkyelk) |kt g—p°
is obtained where

V(%,8) = |(DH(R)| + |[ello(2 - L(%,8) + E).
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Computability issues Iteration of enclosures for cuboids

Set dynamics - differences in the algorithm

» By pairing (x(¥), z(k)), the modified cocycle can be viewed as a
new dynamical system: then
set dynamics is reduced to point dynamics with
different phase space.

» Alternatively, the pair (), X)) is interpreted as an enclosure
for cuboids:

10 = x(K) 4 1=1,1]- e € %K) 4 [—1,1]- 8K,

» Then the error control has to be reinterpreted.

» But the resulting formulas are nearly the same as in the case of
points.

» Only the interpretation is different.
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Computability issues Iteration of enclosures for cuboids

Point dynamics - set dynamics (enclosures)

KU) = F(x())
z) = v (3 gkyztk) Ukt
%O e R(p§, B) x ... x R(pS, B)
V(%,8) = |(DH(R)| + |[ello(2 - L(%,8) + E)
8k — (k)g0)

a0 — . BP° Z0) _ 1

pS is the initial precision for X(9) in the case of points.

v v vvY

extent of /().

Even the algorithm can be expressed via a modified cocycle.
a = 1in the case of points, a« = 2 in the case of cuboids.

In the case of cuboids, pS determines an upper bound on the
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Computational complexity

Computational complexity: loss of significance rates

Definition
Let o™ (x, N, p°) be the minimal precisions for p? such that the
demanded precision p° for the pseudo orbit of length N is achieved
when x € M is the initial condition.
> The growth rate of p™(x, N, p°) is
min 0
a(x, p°) = limsup p(xI,VN,p)

N—oo

The loss of significance rates o: M — R™ are defined by

o(x) = lim o(x,p). (1)

p—00
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Computational complexity

Loss of significance rate - main results (1)

An easy provable observation: the loss of significance rates are
bounded. A bit more effort: the loss of significance rates are bounded
from below by the Lyapunov exponents.

Proposition

Let (M, f) be a dynamical system, x € M and o(x) the loss of
significance rates. Then there exist some ¢ € R'! such that
(0,...,0)t < o(x,p) < o(x) < ¢ holds for all precisions py, ..., pn > 1.

Theorem
Let the notation as above. Then

0i(X) 2 iy Ni(X)

holds fori =1,...,n where \(x) is the ith Lyapunov exponent, if it
exists.
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Computational complexity

Loss of significance rate - main results (2)

» The proof of the theorem is based on a QR-decomposition of the
form

QUk+1) glk+1) _
Q)

(Df)(x (k))Q(k)
1.

» The link between this QR-decomposition and the Lyapunov
exponent is well established in the literature.

» Also R and Q¥ are approximated by B®*), Q).
» Since in 8X) not (Df)(.) but [(Df)(.)| is relevant the matrix

multiplication of matrices of the form |A| need to be done more
elaborate to reduce overestimation of the error.
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Computational complexity

Loss of significance rate - main results (3)

If some additional aspects concerning the QR-decomposition and the
Lyapunov exponents turn out to be true (which actually have not been
checked yet), the we also have:

Theorem
Let the notation as above. Then

5i(X) < g Ni(X)

holds fori=1,...,n.

Thus the Lyapunov exponents turn out also to be an upper bound on
the loss of significance rates.
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