Computational complexity of iterated maps on points and sets

Christoph Spandl

Fakultät für Informatik Universität der Bundeswehr München

CCA 2013

Discrete dynamical systems - point dynamics

- ▶ Let $M \subseteq \mathbb{R}^n$ be a *cuboid*, that is of the form $M = [a,b_1] \times \ldots \times [a_n,b_n]$ with $a_1,\ldots,a_n,b_1,\ldots,b_n \in \mathbb{R}$.
- ▶ Let $f: M \to M$ be a *self mapping*, in particular a C^2 -diffeomorphism.
- ▶ Then the pair (M, f) is called a *discrete dynamical system*.
- ► The dynamics is governed by the *iteration equation*

$$x^{(k+1)} = f(x^{(k)})$$

 $x^{(0)} \in M.$

- ► The second condition specifies the dynamics as an *initial value* problem.
- ▶ The initial value produces an *orbit* $(x^{(k)})_{k \in \mathbb{N}}$ under the dynamics.

Discrete dynamical systems - set dynamics

point dynamics - set dynamics

The standard definition as above describes a dynamics of **points** in \mathbb{R}^n . However, dynamics can also be formulated for **sets** of \mathbb{R}^n .

- ▶ Denote by C_M the set of all compact subsets $A \subseteq M$ of M.
- ▶ Generalize $f: M \to M$ to $f_C: C_M \to C_M$ generically by setting $f_C(A) := f[A]$ for all $A \in C_M$.
- ▶ Then the pair (C_M, f_C) defines a discrete dynamical system on sets.
- ▶ Note that if $f: M \to M$ is computable, then also $f_C: C_M \to C_M$ is computable.

Set dynamics - problems

Set dynamics in the case of **mixing**: Arnold's cat map

- The map is area preserving.
- The initial set is uniformly spread over the whole domain in a few iterations.
- ▶ The number of spheres covering $A^{(k)}$ for given accuracy is typically growing *exponentially* in the number of iterations.

Local set dynamics by linearization: cocycles (1)

Consider a sphere $S = B(x^{(0)}, r)$ and examine $(Df^k)(x^{(0)})$. For given k and r sufficiently small, $f^k(x^{(0)}) + (Df^k)(x^{(0)})B(0, r) \approx f^k[S]$.

Local set dynamics by linearization: cocycles (2)

Lyapunov exponents

- ► The length of the axes of the ellipsoid $f^k(x^{(0)}) + (Df^k)(x^{(0)})B(0,r)$ are denoted by $r_1^{(k)}, \ldots, r_n^{(k)}$.
- ► The value $r_i^{(N)}$ measures the **contraction** or **expansion** near the orbit segment $(x^{(k)})_{k \le N}$ along the *i*th principal axis.
- ▶ Then the *i*th *Lyapunov exponent* λ_i is given by

$$\lambda_i = \lim_{k \to \infty} \frac{\ln(r_i^{(k)})}{k}$$

if the limit exists.

Local set dynamics by linearization: cocycles (3)

This linearized map can be expressed in the framework of a dynamical system by a *cocycle*:

$$x^{(k+1)} = f(x^{(k)})$$

$$z^{(k+1)} = (Df)(x^{(k)}) \cdot z^{(k)}$$

$$x^{(0)} \in M, \quad z^{(0)} = 1$$

where \mathbb{I} is the $n \times n$ identity matrix. Note that $z^{(k)} = (Df^k)(x^{(0)})$.

From approximations to enclosures

- ▶ The above linearization *approximates* $f^k[S]$.
- ▶ It is only *asymptotically exact* for $R \rightarrow 0$, but not for R > 0.
- ▶ However, this approach can be made *rigorous* even for R > 0.
- In verified computing, enclosures are used.
- ▶ Here, this is a function $\overline{f}_C \colon C_M \to C_M$ satisfying

$$f_C(A) \subseteq \overline{f}_C(A)$$

for all $A \in C_M$.

- In the following it is convenient to restrict the domain of the enclosure to *cuboids*.
- ▶ Let Q_M be the set of all cuboids $I \subseteq M$, then find an appropriate function $\overline{f}_Q \colon Q_M \to Q_M$ satisfying $f_C(A) \subseteq \overline{f}_Q(A)$ for all $A \in Q_M$.

Finding an appropriate enclosure (1)

Use a Taylor polynomial with remainder term:

$$f_i(y) = f_i(x) + \sum_j \frac{\partial f_i}{\partial x_j} (x + \Theta_i(y - x)) (y_j - x_j)$$

for $x, y \in M$ with $\Theta_i \in [0, 1], i = 1, ..., n$.

► Furthermore assume a *Lipschitz condition*:

$$\left|\frac{\partial f_i}{\partial x_j}(y) - \frac{\partial f_i}{\partial x_j}(x)\right| \leq (L(I))_{ij} \cdot \|y - x\|_{\infty}$$

Then

$$f_C(I) \subseteq f(x) + ((Df)(x) + [-1, 1] \cdot |I| \cdot L(I))(I - x)$$

for all $I \in Q_M$ where $|I| = \sup_i (|I_i|) = \sup_i (b_i - a_i)$.

Finding an appropriate enclosure (2)

Assume the following normal form

$$I = x + [-1, 1] \cdot e$$

for cuboids $I \in Q_M$, where $x \in M$, $e \in \mathbb{R}^n_+$.

Then

$$f_C(I) \subseteq f(x) + [-1,1] \cdot V(x,e) \cdot e$$

where

$$V(x,e) = |(Df)(x)| + 2||e||_{\infty}L(x + [-1,1] \cdot e).$$

Reformulation: let

$$CQ_M = \{(x, e) \in M \times \mathbb{R}^n_+ \mid x + [-1, 1] \cdot e \in Q_M\},\$$

then define $\overline{f}_Q \colon CQ_M \to M \times \mathbb{R}^n_+$ by

$$\overline{f}_Q(x,e) = (f(x), V(x,e) \cdot e).$$

The modified cocycle

This set dynamics can be formulated by a *modified cocycle*:

$$x^{(k+1)} = f(x^{(k)})$$

 $z^{(k+1)} = V(x^{(k)}, e^{(k)}) \cdot z^{(k)}$
 $x^{(0)} \in M, \quad z^{(0)} = 1$

where

$$V(x, e) = |(Df)(x)| + 2||e||_{\infty}L(x, e)$$

 $e^{(k)} = z^{(k)} \cdot e^{(0)}$
 $e^{(0)} \in \mathbb{R}^n \text{ s.t. } (x^{(0)}, e^{(0)}) \in CQ_M.$

The model of computation - representing reals

We start with a fixed point number system:

$$\widehat{\mathbb{R}}(\boldsymbol{p},\beta) = \{ \boldsymbol{x} \in \mathbb{R} \mid \exists \, r,s \in \mathbb{Z} : \boldsymbol{x} = \boldsymbol{s} + \boldsymbol{r} \cdot \beta^{-\boldsymbol{p}} \ \land \ |\boldsymbol{r}| \leq \beta^{\boldsymbol{p}} - 1 \}$$

- where $\beta \ge$ is the **base** and $p \ge 1$ the **precision**.
- Then we allow arbitrary precision:

$$\widehat{\mathbb{R}}(\beta) = \bigcup_{p \geq 1} \widehat{\mathbb{R}}(p, \beta)$$

▶ A fixed point number $\hat{x} \in \widehat{\mathbb{R}}(p, \beta)$ approximates a real $x \in \mathbb{R}$, if

$$x \in \hat{x} + \beta^{-p}[-1, 1].$$

▶ Any $x \in \mathbb{R}$ can be *represented* by a sequence $(\hat{x}_n)_{n \in \mathbb{N}}$ with $\hat{x}_n \in \mathbb{R}(p_n, \beta)$, each \hat{x}_n approximating x and $\lim_{n \to \infty} p_n = \infty$.

The model of computation - representing functions

▶ Let $f: \subseteq \mathbb{R}^n \to \mathbb{R}$ be given. A function $\hat{f}: \subseteq \widehat{\mathbb{R}}^n \to \widehat{\mathbb{R}}$ is called an approximation function for f if:

$$\hat{x} \in \widehat{\mathbb{R}}^n$$
 approximates $x \in \text{dom}(f) \implies \hat{f}(\hat{x})$ approximates $f(x)$.

▶ We call \hat{f} approximation continuous if for any $(\hat{x}_n)_{n \in \mathbb{N}}$:

$$(\hat{x}_n)_{n\in\mathbb{N}}$$
 representing $x\in\mathrm{dom}(f)\implies (\hat{f}(\hat{x}_n))_{n\in\mathbb{N}}$ representing $f(x)$

- ▶ Since $\widehat{\mathbb{R}}$ is countable, define computability for $\widehat{f}:\subseteq\widehat{\mathbb{R}}^n\to\widehat{\mathbb{R}}$ by *classical computability theory*.
- ► Then *f* is called *computable*, if it has a computable approximation continuous approximation function.

Further specifications and generalizations

▶ Generalization of an approximation of $x \in \mathbb{R}$:

$$(\hat{x}, \overline{e}) \in \widehat{\mathbb{R}}(p_1, \beta) \times \widehat{\mathbb{R}}(p_0, \beta)$$
 approx. $x \in \mathbb{R} \iff x \in \hat{x} + [-1, 1] \cdot \overline{e}$

▶ *Normal form* for approximation functions \hat{f} : $\subseteq \widehat{\mathbb{R}}^n \to \widehat{\mathbb{R}}$:

$$\hat{x} \in \widehat{\mathbb{R}}(p_1, \beta) \times \ldots \times \widehat{\mathbb{R}}(p_n, \beta) \implies \hat{f}(\hat{x}) \in \widehat{\mathbb{R}}(p_0, \beta)$$

$$p_0 = \min(p_1, \ldots, p_n)$$

Normal form for approximations of self mappings f: M → M:

$$\hat{\mathbf{x}} \in \widehat{\mathbb{R}}(\mathbf{p}_1, \beta) \times \ldots \times \widehat{\mathbb{R}}(\mathbf{p}_n, \beta) \implies \hat{\mathbf{f}}(\hat{\mathbf{x}}) \in \widehat{\mathbb{R}}(\mathbf{p}'_1, \beta) \times \ldots \times \widehat{\mathbb{R}}(\mathbf{p}'_n, \beta)$$
$$\beta^{-\mathbf{p}'} \leq |\mathbf{Q} \cdot \beta^{-\mathbf{p}}|$$

where $Q \in \mathbb{R}^{n \times n}$ is an *orthogonal matrix*.

Point dynamics - formulating the algorithm (1)

- A *finite segment* $(x^{(k)})_{0 \le k \le N}$ of length N of the *true orbit* is computed: a *pseudo orbit* $(\hat{x}^{(k)})_{0 \le k \le N}$
- with demanded precision p_1^o, \ldots, p_n^o : $x_i^{(k)} \in \hat{x}_i^{(k)} + \beta^{-p_i^o}[-1, 1]$ for all $k \leq N$.
- In the above formulation:

$$x^{(k)} \in \hat{x}^{(k)} + [-1, 1] \cdot \overline{e}^{(k)}, \quad \overline{e}^{(k)} \le \beta^{-p^o}.$$

▶ Since *N* is fixed, there ex. $p_1^s, \ldots, p_n^s \ge 1$ s.t. the above condition is fulfilled starting with

$$\hat{\mathbf{x}}^{(0)} \in \widehat{\mathbb{R}}(\mathbf{p}_{1}^{s}, \beta) \times \ldots \times \widehat{\mathbb{R}}(\mathbf{p}_{n}^{s}, \beta)$$

and approximating f by

$$\widehat{x}^{(k)} \in \widehat{\mathbb{R}}(p^{(k)}, \beta) \implies \widehat{f}(\widehat{x}) \in \widehat{\mathbb{R}}(p^{(k+1)}, \beta)$$
$$\beta^{-p^{(k+1)}} \leq \overline{e}^{(k+1)} \leq |Q^{(k+1)}\beta^{-p^s}|.$$

Point dynamics - formulating the algorithm (2)

▶ Using the above precision control for \hat{f} and the **modified cocycle** for calculating the *error propagation* leads to

$$\overline{e}^{(k+1)} \geq V(\hat{x}^{(k)}, \overline{e}^{(k)}) \overline{e}^{(k)} + |Q^{(k+1)}\beta^{-p^s}|$$

for the recursion of the error.

Finally, by approximating Df by \widehat{Df} ,

$$\overline{\mathbf{e}}^{(k+1)} = \overline{V}(\hat{\mathbf{x}}^{(k)}, \overline{\mathbf{e}}^{(k)}) \overline{\mathbf{e}}^{(k)} + |\mathbf{Q}^{(k+1)}| \beta^{-p^s}$$

is obtained where

$$\overline{V}(\hat{x}, \overline{e}) = |(\widehat{Df})(\hat{x})| + ||\overline{e}||_{\infty} (2 \cdot \overline{L}(\hat{x}, \overline{e}) + E).$$

Set dynamics - differences in the algorithm

- By pairing (x^(k), z^(k)), the modified cocycle can be viewed as a new dynamical system: then set dynamics is reduced to point dynamics with different phase space.
- ▶ *Alternatively*, the pair $(\hat{x}^{(k)}, \overline{e}^{(k)})$ is interpreted as an *enclosure* for cuboids:

$$I^{(k)} = x^{(k)} + [-1, 1] \cdot e^{(k)} \subseteq \hat{x}^{(k)} + [-1, 1] \cdot \overline{e}^{(k)}.$$

- Then the error control has to be reinterpreted.
- But the resulting formulas are *nearly the same* as in the case of points.
- ▶ Only the *interpretation* is different.

Point dynamics - set dynamics (enclosures)

$$\begin{split} \hat{x}^{(k+1)} &= \hat{f}(\hat{x}^{(k)}) \\ \overline{z}^{(k+1)} &= \overline{V}(\hat{x}^{(k)}, \overline{e}^{(k)}) \overline{z}^{(k)} + |Q^{(k+1)}| \\ \hat{x}^{(0)} &\in \widehat{\mathbb{R}}(p_1^s, \beta) \times \ldots \times \widehat{\mathbb{R}}(p_n^s, \beta) \\ \overline{V}(\hat{x}, \overline{e}) &= |(\widehat{Df})(\hat{x})| + ||\overline{e}||_{\infty} (2 \cdot \overline{L}(\hat{x}, \overline{e}) + E) \\ \overline{e}^{(k)} &= \overline{z}^{(k)} \overline{e}^{(0)} \\ \overline{e}^{(0)} &= \alpha \cdot \beta^{-p^s}, \quad \overline{z}^{(0)} &= 1 \end{split}$$

- Even the algorithm can be expressed via a modified cocycle.
- $\sim \alpha = 1$ in the case of points, $\alpha = 2$ in the case of cuboids.
- \triangleright p^s is the initial precision for $\hat{x}^{(0)}$ in the case of points.
- ▶ In the case of cuboids, p^s determines an upper bound on the extent of $I^{(0)}$.

Computational complexity: loss of significance rates

Definition

Let $p_i^{min}(x, N, p^o)$ be the minimal precisions for p_i^s such that the demanded precision p^o for the pseudo orbit of length N is achieved when $x \in M$ is the initial condition.

► The growth rate of $p_i^{min}(x, N, p^o)$ is

$$\sigma(x, p^o) = \limsup_{N \to \infty} \frac{p^{min}(x, N, p^o)}{N}.$$

The *loss of significance rates* $\sigma: M \to \mathbb{R}^n$ are defined by

$$\sigma(x) = \lim_{p \to \infty} \sigma(x, p). \tag{1}$$

Loss of significance rate - main results (1)

An easy provable observation: the loss of significance rates are **bounded**. A bit more effort: the loss of significance rates are bounded from below by the **Lyapunov exponents**.

Proposition

Let (M, f) be a dynamical system, $x \in M$ and $\sigma(x)$ the loss of significance rates. Then there exist some $c \in \mathbb{R}^n_+$ such that $(0, \ldots, 0)^t \le \sigma(x, p) \le \sigma(x) \le c$ holds for all precisions $p_1, \ldots, p_n \ge 1$.

Theorem

Let the notation as above. Then

$$\sigma_i(x) \geq \frac{1}{\ln(2)} \lambda_i(x)$$

holds for i = 1, ..., n where $\lambda_i(x)$ is the ith Lyapunov exponent, if it exists.

Loss of significance rate - main results (2)

The proof of the theorem is based on a QR-decomposition of the form

$$Q^{(k+1)}R^{(k+1)} = (Df)(x^{(k)})Q^{(k)}$$

 $Q^{(0)} = 1.$

- ► The link between this QR-decomposition and the Lyapunov exponent is well established in the literature.
- ▶ Also $R^{(k)}$ and $Q^{(k)}$ are approximated by $\hat{R}^{(k)}$, $\hat{Q}^{(k)}$.
- Since in $\overline{e}^{(k)}$ not $(\widehat{Df})(.)$ but $|(\widehat{Df})(.)|$ is relevant the matrix multiplication of matrices of the form |A| need to be done more elaborate to reduce *overestimation of the error*.

Loss of significance rate - main results (3)

If some additional aspects concerning the *QR*-decomposition and the Lyapunov exponents turn out to be true (which actually have not been checked yet), the we also have:

Theorem

Let the notation as above. Then

$$\sigma_i(x) \leq \frac{1}{\ln(2)} \lambda_i(x)$$

holds for i = 1, ..., n.

Thus the Lyapunov exponents turn out also to be an *upper bound* on the loss of significance rates.