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Introduction

Discrete dynamical systems - point dynamics

I Let M ⊆ Rn be a cuboid, that is of the form
M = [a,b1]× . . .× [an,bn] with a1, . . . ,an,b1, . . . ,bn ∈ R.

I Let f : M → M be a self mapping, in particular a
C2-diffeomorphism.

I Then the pair (M, f ) is called a discrete dynamical system.
I The dynamics is governed by the iteration equation

x (k+1) = f (x (k))

x (0) ∈ M.

I The second condition specifies the dynamics as an initial value
problem.

I The initial value produces an orbit (x (k))k∈N under the dynamics.
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Introduction

Discrete dynamical systems - set dynamics

point dynamics - set dynamics
The standard definition as above describes a dynamics of points in
Rn. However, dynamics can also be formulated for sets of Rn.

I Denote by CM the set of all compact subsets A ⊆ M of M.
I Generalize f : M → M to fC : CM → CM generically by setting

fC(A) := f [A] for all A ∈ CM .
I Then the pair (CM , fC) defines a discrete dynamical system on

sets.
I Note that if f : M → M is computable, then also fC : CM → CM is

computable.
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Introduction

Set dynamics - problems

Set dynamics in the case of mixing: Arnold’s cat map

I The map is area preserving.
I The initial set is uniformly spread over the whole domain in a few

iterations.
I The number of spheres covering A(k) for given accuracy is

typically growing exponentially in the number of iterations.
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Iteration on points and sets

Local set dynamics by linearization: cocycles (1)

Consider a sphere S = B(x (0), r) and examine (Df k )(x (0)). For given k
and r sufficiently small, f k (x (0)) + (Df k )(x (0))B(0, r) ≈ f k [S].
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Iteration on points and sets

Local set dynamics by linearization: cocycles (2)

Lyapunov exponents

I The length of the axes of the ellipsoid f k (x (0)) + (Df k )(x (0))B(0, r)

are denoted by r (k)1 , . . . , r (k)n .

I The value r (N)
i measures the contraction or expansion near the

orbit segment (x (k))k≤N along the i th principal axis.
I Then the i th Lyapunov exponent λi is given by

λi = lim
k→∞

ln(r (k)i )

k

if the limit exists.
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Iteration on points and sets

Local set dynamics by linearization: cocycles (3)

This linearized map can be expressed in the framework of a dynamical
system by a cocycle:

x (k+1) = f (x (k))

z(k+1) = (Df )(x (k)) · z(k)

x (0) ∈ M, z(0) = 1

where 1 is the n × n identity matrix. Note that z(k) = (Df k )(x (0)).
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Iteration on points and sets

From approximations to enclosures

I The above linearization approximates f k [S].
I It is only asymptotically exact for R → 0, but not for R > 0.
I However, this approach can be made rigorous even for R > 0.
I In verified computing, enclosures are used.
I Here, this is a function f C : CM → CM satisfying

fC(A) ⊆ f C(A)

for all A ∈ CM .
I In the following it is convenient to restrict the domain of the

enclosure to cuboids.
I Let QM be the set of all cuboids I ⊆ M, then find an appropriate

function f Q : QM → QM satisfying fC(A) ⊆ f Q(A) for all A ∈ QM .
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Iteration on points and sets

Finding an appropriate enclosure (1)

I Use a Taylor polynomial with remainder term:

fi(y) = fi(x) +
∑

j

∂fi
∂xj

(
x + Θi(y − x)

)
(yj − xj)

for x , y ∈ M with Θi ∈ [0,1], i = 1, . . . ,n.
I Furthermore assume a Lipschitz condition:∣∣∣∣ ∂fi

∂xj
(y)− ∂fi

∂xj
(x)

∣∣∣∣ ≤ (L(I))ij · ‖y − x‖∞

I Then

fC(I) ⊆ f (x) +
(
(Df )(x) + [−1,1] · |I| · L(I)

)
(I − x)

for all I ∈ QM where |I| = supi(|Ii |) = supi(bi − ai).
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Iteration on points and sets

Finding an appropriate enclosure (2)
I Assume the following normal form

I = x + [−1,1] · e

for cuboids I ∈ QM , where x ∈ M, e ∈ Rn
+.

I Then
fC(I) ⊆ f (x) + [−1,1] · V (x ,e) · e

where

V (x ,e) = |(Df )(x)|+ 2‖e‖∞L(x + [−1,1] · e).

I Reformulation: let

CQM = {(x ,e) ∈ M × Rn
+ | x + [−1,1] · e ∈ QM},

then define f Q : CQM → M × Rn
+ by

f Q(x ,e) = (f (x),V (x ,e) · e) .
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Iteration on points and sets

The modified cocycle

This set dynamics can be formulated by a modified cocycle:

x (k+1) = f (x (k))

z(k+1) = V (x (k),e(k)) · z(k)

x (0) ∈ M, z(0) = 1

where

V (x ,e) = |(Df )(x)|+ 2‖e‖∞L(x ,e)

e(k) = z(k) · e(0)

e(0) ∈ Rn s.t . (x (0),e(0)) ∈ CQM .
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Computability issues General framework

The model of computation - representing reals

I We start with a fixed point number system:

R̂(p, β) = {x ∈ R | ∃ r , s ∈ Z . x = s + r · β−p ∧ |r | ≤ βp − 1}

I where β ≥ is the base and p ≥ 1 the precision.
I Then we allow arbitrary precision:

R̂(β) =
⋃
p≥1

R̂(p, β)

I A fixed point number x̂ ∈ R̂(p, β) approximates a real x ∈ R, if

x ∈ x̂ + β−p[−1,1].

I Any x ∈ R can be represented by a sequence (x̂n)n∈N with
x̂n ∈ R̂(pn, β), each x̂n approximating x and limn→∞ pn =∞.
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Computability issues General framework

The model of computation - representing functions

I Let f :⊆Rn → R be given. A function f̂ :⊆ R̂n → R̂ is called an
approximation function for f if:

x̂ ∈ R̂n approximates x ∈ dom(f ) =⇒ f̂ (x̂) approximates f (x).

I We call f̂ approximation continuous if for any (x̂n)n∈N:

(x̂n)n∈N representing x ∈ dom(f ) =⇒ (f̂ (x̂n))n∈N representing f (x)

I Since R̂ is countable, define computability for f̂ :⊆ R̂n → R̂ by
classical computability theory.

I Then f is called computable, if it has a computable approximation
continuous approximation function.
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Computability issues General framework

Further specifications and generalizations

I Generalization of an approximation of x ∈ R:

(x̂ ,e) ∈ R̂(p1, β)× R̂(p0, β) approx. x ∈ R ⇐⇒ x ∈ x̂ + [−1,1] · e

I Normal form for approximation functions f̂ :⊆ R̂n → R̂:

x̂ ∈ R̂(p1, β)× . . .× R̂(pn, β) =⇒ f̂ (x̂) ∈ R̂(p0, β)

p0 = min(p1, . . . ,pn)

I Normal form for approximations of self mappings f : M → M:

x̂ ∈ R̂(p1, β)× . . .× R̂(pn, β) =⇒ f̂ (x̂) ∈ R̂(p′1, β)× . . .× R̂(p′n, β)

β−p′ ≤
∣∣Q · β−p∣∣

where Q ∈ Rn×n is an orthogonal matrix.
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Computability issues Iteration of points

Point dynamics - formulating the algorithm (1)
I A finite segment (x (k))0≤k≤N of lenght N of the true orbit is

computed: a pseudo orbit (x̂ (k))0≤k≤N

I with demanded precision po
1 , . . . ,p

o
n : x (k)

i ∈ x̂ (k)
i + β−po

i [−1,1] for
all k ≤ N.

I In the above formulation:

x (k) ∈ x̂ (k) + [−1,1] · e(k), e(k) ≤ β−po
.

I Since N is fixed, there ex. ps
1, . . . ,p

s
n ≥ 1 s.t. the above condition

is fulfilled starting with

x̂ (0) ∈ R̂(ps
1, β)× . . .× R̂(ps

n, β)

and approximating f by

x̂ (k) ∈ R̂(p(k), β) =⇒ f̂ (x̂) ∈ R̂(p(k+1), β)

β−p(k+1) ≤ e(k+1) ≤
∣∣Q(k+1)β−ps ∣∣.
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Computability issues Iteration of points

Point dynamics - formulating the algorithm (2)

I Using the above precision control for f̂ and the modified cocycle
for calculating the error propagation leads to

e(k+1) ≥ V (x̂ (k),e(k))e(k) + |Q(k+1)β−ps |

for the recursion of the error.
I Finally, by approximating Df by D̂f ,

e(k+1) = V (x̂ (k),e(k))e(k) + |Q(k+1)|β−ps

is obtained where

V (x̂ ,e) = |(D̂f )(x̂)|+ ‖e‖∞(2 · L(x̂ ,e) + E).
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Computability issues Iteration of enclosures for cuboids

Set dynamics - differences in the algorithm

I By pairing (x (k), z(k)), the modified cocycle can be viewed as a
new dynamical system: then

set dynamics is reduced to point dynamics with
different phase space.

I Alternatively, the pair (x̂ (k),e(k)) is interpreted as an enclosure
for cuboids:

I(k) = x (k) + [−1,1] · e(k) ⊆ x̂ (k) + [−1,1] · e(k).

I Then the error control has to be reinterpreted.
I But the resulting formulas are nearly the same as in the case of

points.
I Only the interpretation is different.
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Computability issues Iteration of enclosures for cuboids

Point dynamics - set dynamics (enclosures)

x̂ (k+1) = f̂ (x̂ (k))

z(k+1) = V (x̂ (k),e(k))z(k) + |Q(k+1)|

x̂ (0) ∈ R̂(ps
1, β)× . . .× R̂(ps

n, β)

V (x̂ ,e) = |(D̂f )(x̂)|+ ‖e‖∞(2 · L(x̂ ,e) + E)

e(k) = z(k)e(0)

e(0) = α · β−ps
, z(0) = 1

I Even the algorithm can be expressed via a modified cocycle.
I α = 1 in the case of points, α = 2 in the case of cuboids.
I ps is the initial precision for x̂ (0) in the case of points.
I In the case of cuboids, ps determines an upper bound on the

extent of I(0).
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Computational complexity

Computational complexity: loss of significance rates

Definition
Let pmin

i (x ,N,po) be the minimal precisions for ps
i such that the

demanded precision po for the pseudo orbit of length N is achieved
when x ∈ M is the initial condition.

I The growth rate of pmin
i (x ,N,po) is

σ(x ,po) = lim sup
N→∞

pmin(x ,N,po)

N
.

The loss of significance rates σ : M → Rn are defined by

σ(x) = lim
p→∞

σ(x ,p). (1)
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Computational complexity

Loss of significance rate - main results (1)

An easy provable observation: the loss of significance rates are
bounded. A bit more effort: the loss of significance rates are bounded
from below by the Lyapunov exponents.

Proposition
Let (M, f ) be a dynamical system, x ∈ M and σ(x) the loss of
significance rates. Then there exist some c ∈ Rn

+ such that
(0, . . . ,0)t ≤ σ(x ,p) ≤ σ(x) ≤ c holds for all precisions p1, . . . ,pn ≥ 1.

Theorem
Let the notation as above. Then

σi(x) ≥ 1
ln(2)λi(x)

holds for i = 1, . . . ,n where λi(x) is the ith Lyapunov exponent, if it
exists.
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Computational complexity

Loss of significance rate - main results (2)

I The proof of the theorem is based on a QR-decomposition of the
form

Q(k+1)R(k+1) = (Df )(x (k))Q(k)

Q(0) = 1.

I The link between this QR-decomposition and the Lyapunov
exponent is well established in the literature.

I Also R(k) and Q(k) are approximated by R̂(k), Q̂(k).
I Since in e(k) not (D̂f )(.) but |(D̂f )(.)| is relevant the matrix

multiplication of matrices of the form |A| need to be done more
elaborate to reduce overestimation of the error.
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Computational complexity

Loss of significance rate - main results (3)

If some additional aspects concerning the QR-decomposition and the
Lyapunov exponents turn out to be true (which actually have not been
checked yet), the we also have:

Theorem
Let the notation as above. Then

σi(x) ≤ 1
ln(2)λi(x)

holds for i = 1, . . . ,n.
Thus the Lyapunov exponents turn out also to be an upper bound on
the loss of significance rates.
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